ATP-dependent effects of halothane on SR Ca2+ regulation in permeabilized atrial myocytes.

نویسندگان

  • Zhaokang Yang
  • Simon M Harrison
  • Derek S Steele
چکیده

OBJECTIVE Previous work suggests that modification of sarcoplasmic reticulum (SR) function may contribute to the cardioprotective effect of halothane during ischaemia and reperfusion. The aim of this study was to investigate the effects of halothane on spontaneous Ca(2+) release from the sarcoplasmic reticulum (Ca(2+) sparks and waves). METHODS Rat atrial myocytes were permeabilized with saponin and perfused with solutions approximating to the intracellular milieu and containing fluo-3. SR Ca(2+) release was detected using confocal microscopy. RESULTS In the presence of 5 mM ATP, halothane (0.25-2 mM) had no significant effect on the amplitude or frequency of spontaneous Ca(2+) waves. However, in the presence of 0.05 mM ATP, halothane (0.25-2 mM) induced a concentration-dependent decrease in the amplitude and an increase in the frequency of spontaneous Ca(2+) waves, e.g., 1 mM halothane decreased the amplitude by 34.7+/-3.5% (n=9) and increased the frequency by 67+/-19.9% (n=7). In the presence of 5 mM ATP, 1 mM halothane had no significant effect on the amplitude or frequency of Ca(2+) sparks. When [ATP] was reduced to 0.05 mM, Ca(2+) spark frequency decreased by 67.9+/-14% and the amplitude increased by 27.5+/-4.9% (n=13). Subsequent introduction of halothane (0.5-1 mM) induced a transient burst of Ca(2+) sparks, consistent with ryanodine receptor (RyR) activation. Further experiments showed that the decrease in Ca(2+) spark frequency following ATP depletion was associated with a progressive increase in the SR Ca(2+) content over 1-2 min. This rise in SR Ca(2+) content did not occur when 1 mM halothane was present during ATP depletion. CONCLUSIONS These data suggest that the sensitivity of the RyR to activation by halothane increases at low [ATP]. In metabolically impaired cells, halothane would be expected to lessen any rise in SR Ca(2+) content and to reduce the amplitude of spontaneous Ca(2+) release. These effects of halothane are considered in relation to the events that occur during ischaemia and reperfusion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of halothane on intracellular calcium oscillations in porcine tracheal smooth muscle cells.

The effect of halothane on intracellular Ca2+ concentration ([Ca2+]i) regulation in porcine tracheal smooth muscle cells was examined with real-time confocal microscopy. Both 1 and 2 minimum alveolar concentration (MAC) halothane increased basal [Ca2+]iwhen Ca2+ influx and efflux were blocked, suggesting increased sarcoplasmic reticulum (SR) Ca2+ leak and/or decreased reuptake. In β-escin-perme...

متن کامل

Mechanisms underlying greater sensitivity of neonatal cardiac muscle to volatile anesthetics.

BACKGROUND In neonatal heart, plasma membrane Na+-Ca2+ exchange (NCX) and Ca2+ influx channels play greater roles in intracellular Ca2+ concentration [Ca2+]i regulation compared with the sarcoplasmic reticulum (SR). In neonatal (aged 0-3 days) and adult (aged 84 days) rat cardiac myocytes, we determined the mechanisms underlying greater sensitivity of the neonatal myocardium to inhibition by vo...

متن کامل

Halothane and sevoflurane inhibit Na/Ca exchange current in rat ventricular myocytes.

BACKGROUND The electrogenic Na+/Ca2+ exchanger (NCX) represents the main extrusion pathway for Ca2+ in ventricular muscle and therefore plays an important role in the regulation of cytosolic Ca2+ and contraction. Halothane and sevoflurane modulate cytosolic Ca2+ regulation and at steady state are negatively inotropic, however, the involvement of anaesthetic-induced changes in NCX activity in th...

متن کامل

Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes.

Despite extensive research, the mechanisms responsible for the graded nature and early termination of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) in cardiac muscle remain poorly understood. Suggested mechanisms include cytosolic Ca2+-dependent inactivation/adaptation and luminal Ca2+-dependent deactivation of the SR Ca2+ release channels/ryanodine receptors (RyRs). To ...

متن کامل

NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium-induced calcium release.

NADH and Ca2+ have important regulatory functions in cardiomyocytes related to excitation-contraction coupling and ATP production. To elucidate elements of these functions, we examined the effect of NADH on sarcoplasmic reticulum (SR) Ca2+ release and the mechanisms of this regulation. Physiological concentrations of cytosolic NADH inhibited ryanodine receptor type 2 (RyR2)-mediated Ca2+-induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 65 1  شماره 

صفحات  -

تاریخ انتشار 2005